ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRICAL AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
LINEAR SYSTEMS	ECE-501	FALL-SPRING	3 + 0	3	7,5

Prerequisite Courses none

Туре	Elective		
Language	English		
Coordinator	Assoc. Prof. Dr. Günyaz Ablay		
Instructor	Assoc. Prof. Dr. Günyaz Ablay		
Adjunct	none		
Aim	Learning, understanding and applying linear analysis and design tools that are needed in electrical engineering studies.		
Learning Outcomes	 To give an opportunity to students for learning the fundamentals of linear systems learning the stability theorems learning linear control design with feedback learning optimal design methods learning discrete-time systems and related tools learning software tools that can be used for analysis and design of nonlinear systems 		
Course Content	 Introduction to Linear Systems State-space representation and analysis Solution for state-space linear time-invariant (LTI) systems Controllability and Observability State Feedback Control Optimal Control Stability Discrete-time systems Design Considerations and Steady-state accuracy MIMO systems Passivity Polynomial representations 		

WEEKLY TOPICS AND PRELIMINARY STUDY

Week	Торіс	Preliminary Study
1	Introduction and course overview System representation, Superposition principle Analog vs. Digital signals and systems Laplace solutions, Transfer functions, Block diagrams 	The relevant lecture notes
2	System representation and analysis State-space representations Realizations Linearization 	The relevant lecture notes
3	Solution for state-space linear time-invariant (LTI) systems • • Solution to homogeneous linear systems • State-transition matrix • Properties of the state transition matrix • Solution to nonhomogeneous linear systems	The relevant lecture notes
4	Controllability and Observability Controllability and observability matrices Canonical forms Eigenvalues & Eigenvectors Jordan Canonical form 	The relevant lecture notes
5	State Feedback Control	The relevant lecture notes
6	Optimal Control Performance index Riccati solutions	The relevant lecture notes

	•	Kalman filter	
7	Stability • • •	Definitions Complex plane and Eigenvalues condition Lyapunov Stability Theorem Stability of nonlinear systems from local linearization	The relevant lecture notes
8	Midterm		
9	Discrete-time	e systems Discrete equations Stability Discretization	The relevant lecture notes
10	Design Consid • •	derations and Steady-state accuracy Performance requirements Steady-state accuracy Disturbance rejection	The relevant lecture notes
11	MIMO system	ns Diagonal realizations Controllability and observability Controlling MIMO systems	The relevant lecture notes
12	Polynomial re	epresentations Polynomial matrix Smith and McMillian forms Polynomial Control Design	The relevant lecture notes
13	Review Summary of	the course, questions and answers	The relevant lecture notes
14	Final Exam		

SOURCES	
Lecture Notes	Lecture notes and slides
Other Sources	Course Textbook: J. Hespanha, <i>Linear Systems Theory</i> , Princeton University Press, 2009. Additional Materials:
	1. P. Antsaklis, A. Michel. Linear Systems. McGraw Hill, 1997.
	1. P. Antsaklis, A. Michel. Linear Systems. McGraw Hill, 1997.

COURSE MATERIALS SHARING				
Documents	Lecture notes, slides and papers			
Homework	Students will be given one homework each week			
Exams	1 Midterm and 1 Final Exam			

EVALUATION SYSTEM					
SEMESTER STUDY		CONTRIBUTION			
Midterm	1	20			
Homework	14	25			
Quiz	14	25			
SUB-TOTAL		70			
Contribution of Semester Study		70			
Contribution of Final Exam		30			
TOTAL		100			

Course Category				
Sciences and Mathematics	30%			
Engineering	70%			
Social Sciences	0%			

RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
İ		Contribution Level				
No Program Qualifications		1	2	3	4	5
1	The skills of using mathematics, science and engineering information in advanced research,					x

2	The skills of analyzing, designing and/or implementing an original system that will be able to solve an engineering problem,		x
3	The skills of using the required software, hardware and modern measurement equipment in their field of research,		x
4	The skills of planning independent research and implementing in detail,		x
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level,	x	
6	The skills of innovative and interrogative thinking and finding original solutions	x	

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 16x total course hours)	14	3	42			
Out-of-class Study Time (Pre-study, practice)	14	4	56			
Internet search, library work, literature search	14	5	70			
Presentation	1	5	5			
Homework	14	5	70			
Midterm	1	27	27			
Final Exam	1	30	30			
Total Work Load			300			
Total Work Load / 30			300/30			
Course ECTS Credit			7,5			